Autonomous optimization of casting processes and designs
نویسندگان
چکیده
Twenty years after the introduction of simulation software for foundries into the industry, casting process simulation has become an accepted tool for process and design lay-out. Casting process simulation always displays the status quo of its expert user. The user decides if the rigging system or process parameters lead to an acceptable result. Additionally, proposals for optimized solutions have to come from the operator. One of the biggest benefits of the casting process is also its biggest downfall: Everything happens at the same time and is coupled. Changes in one process parameter impact many casting quality defining features during the process. Multiobjective autonomous optimization offers a way out. Autonomous optimization uses the simulation tool as a virtual experimentation field and changes pouring conditions, gating designs or process parameters and this way tries to find the optimal route to fulfill the desired objective. Several parameters can be changed and evaluated independently from each other. Autonomous optimization tools take the classic approach of foundry engineers, to find the best compromise and use validated physics. This not only further reduces the need for trial runs to find the optimal process window, but allows the detailed evaluation of many process parameters and their individual impact on providing a robust process. Obviously, what can be simulated can be optimized. Optimization, therefore, is not a replacement for process knowledge and expertise. Despite beliefs to the contrary, the simulation user of the future needs to know the objectives and goals, and especially the quality criteria that are needed to reach these goals. The questions to ask a program are easy: What is a good gating system? To answer this question, quantitative solutions are required. An old foundry man’s dream is becoming reality: trial and error is not performed on the shop floor but on the computer. The foundry man defines his optimization goals and can evaluate the best possible solution. He also receives quantitative information about the sensitivity of important process parameters and can assess the robustness of his designs. The paper will give an overview on the state of the art of virtual autonomous optimization on selected industrial examples.
منابع مشابه
Optimization of Centrifugal Casting Parameters of AlSi Alloy by using the Response Surface Methodology
Centrifugal casting is one of the advanced casting branches widely used in the metallurgical industry in which the centrifugal force helps strengthen the workpiece material. The present work attempt to study the effect of the horizontal and vertical centrifugal casting parameters included the centrifugal mold rotation speeds and G-factors values on the quality of the product. The work has been ...
متن کاملCharacterization and Investigation of Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades
Manufactured single crystal components using Ni-base super alloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection,...
متن کاملReliability-based Casting Process Design Optimization
Optimum casting designs are unreliable without consideration of the statistical and physical uncertainties in the casting process. In the present research, casting simulation is integrated with a general purpose reliability-based design optimization (RBDO) software tool previously developed at the University of Iowa. The RBDO methodology considers uncertainties in both the input variables as we...
متن کاملCharacterization and Investigation of Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades
Manufactured single crystal components using Ni-base super alloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection,...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کامل